Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

SUBSCRIPTION MANAGEMENT

發(fā)行征訂

首頁 >> 發(fā)行征訂 >> 征訂方式

基于改進河馬優(yōu)化算法的含分布式電源配電網(wǎng)重構(gòu)

來源:電工電氣發(fā)布時間:2024-11-04 15:04瀏覽次數(shù):35

基于改進河馬優(yōu)化算法的含分布式電源配電網(wǎng)重構(gòu)

楊馳澤,吳韡,王祥,馬凡爍
(湖南工業(yè)大學(xué) 電氣與信息工程學(xué)院,湖南 株洲 412007)
 
    摘 要:為有效解決分布式電源并入配電網(wǎng)的優(yōu)化重構(gòu)問題,達到降低系統(tǒng)網(wǎng)絡(luò)損耗的目的,構(gòu)建了以有功網(wǎng)損最小為目標的含分布式電源配電網(wǎng)優(yōu)化重構(gòu)模型,并采用改進河馬優(yōu)化算法進行求解。為防止算法陷入局部最優(yōu),引入高斯映射以及改進萊維飛行策略對河馬優(yōu)化算法進行改進,運用 IEEE 33 節(jié)點系統(tǒng)仿真計算,檢驗含分布式電源配電網(wǎng)重構(gòu)模型求解效率。通過與灰狼優(yōu)化算法及粒子群優(yōu)化算法的結(jié)果比對,改進河馬優(yōu)化算法以最少迭代次數(shù)求得最優(yōu)解,能夠有效提升節(jié)點電壓,并顯著降低網(wǎng)損。
    關(guān)鍵詞: 配電網(wǎng)重構(gòu);分布式電源;高斯映射;改進萊維飛行策略;改進河馬優(yōu)化算法;節(jié)點電壓;灰狼優(yōu)化算法;粒子群優(yōu)化算法
    中圖分類號:TM715 ;TM734     文獻標識碼:A     文章編號:1007-3175(2024)10-0001-07
 
The Distribution Network Reconstruction with Distribution Generation
Based on Improved Hippo Optimization Algorithm
 
YANG Chi-ze, WU Wei, WANG Xiang, MA Fan-shuo
(College of Electrical and Information Engineering, Hunan University of Technology, Zhuzhou 412007, China)
 
    Abstract: To effectively solve the problem of optimal reconstruction of distributed generation integrated into distribution networks and achieve the goal of reducing system network losses, an optimal reconstruction model for distribution networks with distributed generation is constructed with the objective of minimizing active power loss, and this model is solved using an improved hippo optimizer algorithm. In order to prevent the algorithm from falling into the local optimum, the Gaussian mapping and the improved Lévy flight strategy were introduced to improve the hippo optimization algorithm, and the IEEE 33-node system simulation calculation was used to test the solution efficiency of the distribution network reconstruction model with distributed generators. By comparing the results of the grey wolf optimization algorithm and the particle swarm optimization algorithm, the improved hippo optimization algorithm obtains the optimal solution with the minimum number of iterations, which can effectively increase the node voltage and significantly reduce the network loss.
    Key words: distribution network reconstruction; distributed generation; Gaussian mapping; improved Lévy flight strategy; improved hippo optimization algorithm; node voltage; grey wolf optimization algorithm; particle swarm optimization algorithm
 
參考文獻
[1] 冀肖彤,楊東俊,方仍存,等.“雙碳”目標下未來配電網(wǎng)構(gòu)建思考與展望[J] . 電力建設(shè),2024,45(2) :37-48.
[2] 郝文斌,孟志高,張勇,等. 新型電力系統(tǒng)下多分布式電源接入配電網(wǎng)承載力評估方法研究[J]. 電力系統(tǒng)保護與控制,2023,51(14) :23-33.
[3] 曹敬,金玉龍,鄭濤,等. 計及分布式電源集群不確定性的配電網(wǎng)分散魯棒電壓控制[J]. 電力系統(tǒng)保護與控制,2023,51(22) :155-166.
[4] 魏光明,邱東,慕俊強,等. 分布式電源接入對配電網(wǎng)網(wǎng)絡(luò)損耗的影響研究[J] . 石河子科技,2024(1) :34-35.
[5] 袁兆祥, 張翼, 聶銘, 等. 分布式新能源接入的 10 kV 配電網(wǎng)保護適應(yīng)性分析[J] . 電力建設(shè),2024,45(2) :49-57.
[6] 曹亮,房睿,張怡捷. 分布式電源接入對配電網(wǎng)的影響分析[J]. 電力與能源,2023,44(6) :622-624.
[7] 黃鳴宇,張慶平,張沈習(xí). 高比例清潔能源接入下計及需求響應(yīng)的配電網(wǎng)重構(gòu)[J] . 電力系統(tǒng)保護與控制,2022,50(1) :116-123.
[8] 溫東翰,徐敏. 基于改進型蟻獅算法的主動配電網(wǎng)優(yōu)化重構(gòu)[J]. 電氣應(yīng)用,2020,39(7) :31-35.
[9] 班波,袁至. 基于破圈法與改進布谷鳥算法的兩階段配電網(wǎng)重構(gòu)[J] . 現(xiàn)代電子技術(shù),2023,46(3) :161-166.
[10] 高金蘭,王良禹,宋爽. 基于改進黏菌算法的配電網(wǎng)重構(gòu)研究[J] . 吉林大學(xué)學(xué)報(信息科學(xué)版),2022,40(5) :759-766.
[11] 孔維旭,李亞婷. 基于大猩猩優(yōu)化算法的配電網(wǎng)重構(gòu)研究[J]. 電工電氣,2022(4) :32-36.
[12] 陽曉明,呂紅芳,朱輝. 基于改進人工魚群算法的配電網(wǎng)絡(luò)重構(gòu)[J]. 電測與儀表, 2020,57(17) :72-78.
[13] 鄒銳,王超學(xué). 基于改進參數(shù)協(xié)進化和聲搜索算法的配電網(wǎng)重構(gòu)[J]. 自動化儀表,2021,42(7) :53-58.
[14] 何青,張靖,何宇,等. 基于改進差分進化和模擬退火算法的含 DG 配電網(wǎng)多目標重構(gòu)[J] . 電力科學(xué)與工程,2020,36(12) :15-21.
[15] 林清源,薛毓強,曾乙宸. 配電網(wǎng)重構(gòu)研究綜述[J] .電氣開關(guān),2021,59(1) :3-8.
[16] 陳春,汪沨,劉蓓,等. 基于基本環(huán)矩陣與改進和聲搜索算法的配電網(wǎng)重構(gòu)[J] . 電力系統(tǒng)自動化,2014,38(6) :55-60.
[17] 連勝,劉闖,陳濤,等. 基于差分粒子群算法的含 DG 配電網(wǎng)優(yōu)化重構(gòu)[J] . 安徽電氣工程職業(yè)技術(shù)學(xué)院學(xué)報,2023,28(1) :38-44.
[18] MOHAMMAD Hussein Amiri, HASHJIN Nastaran Mehrabi, MONTAZERI Mohsen, et al.Hippopotamus Optimization Algorithm: A Novel Nature-Inspired Optimization Algorithm[J].Scientific Reports,2024,14(1) :5032.