Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

SUBSCRIPTION MANAGEMENT

發(fā)行征訂

首頁 >> 發(fā)行征訂 >> 征訂方式

基于模糊自適應(yīng)PID的SRM直接轉(zhuǎn)矩控制系統(tǒng)研究

來源:電工電氣發(fā)布時間:2024-07-03 08:03瀏覽次數(shù):199

基于模糊自適應(yīng)PID的SRM直接轉(zhuǎn)矩控制系統(tǒng)研究

王雷,高亨,崔玉鑫,王育安,吳建昆
(河北科技大學(xué) 電氣工程學(xué)院,河北 石家莊 050000)
 
    摘 要:針對傳統(tǒng)模糊控制器在控制過程中存在超調(diào)量大、控制精度不高以及靜差等問題,提出了一種基于優(yōu)化模糊自適應(yīng) PID 的開關(guān)磁阻電機(jī)控制方法。利用改進(jìn)蝙蝠算法對模糊控制器進(jìn)行優(yōu)化,以外環(huán)模糊自適應(yīng) PID 控制器的輸出變量為內(nèi)環(huán)控制系統(tǒng)的參考轉(zhuǎn)矩,送入直接轉(zhuǎn)矩控制系統(tǒng)。仿真結(jié)果表明,經(jīng)過算法優(yōu)化的模糊自適應(yīng) PID 控制器在動態(tài)性能和魯棒性方面明顯優(yōu)于傳統(tǒng)模糊 PID 控制器,成功克服了模糊控制中存在的穩(wěn)態(tài)誤差和抗干擾能力不足的問題,有效解決了系統(tǒng)上升時間和超調(diào)之間的矛盾,同時顯著減少了電機(jī)轉(zhuǎn)矩的脈動。
    關(guān)鍵詞: 開關(guān)磁阻電機(jī);模糊自適應(yīng)PID ;改進(jìn)蝙蝠算法;直接轉(zhuǎn)矩控制
    中圖分類號:TM352 ;TP273+.2     文獻(xiàn)標(biāo)識碼:A     文章編號:1007-3175(2024)06-0023-06
 
Research on SRM Direct Torque Control System Based on
Fuzzy Adaptive PID
 
WANG Lei, GAO Heng, CUI Yu-xin, WANG Yu-an, WU Jian-kun
(School of Electrical Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China)
 
    Abstract: Aiming at the traditional fuzzy controllers in the control process, there were problems such as large overshoot, low control accuracy and static error, a switching reluctance motor control method based on optimize fuzzy adaptive PID was presented. The fuzzy controller was optimized by using improved bat algorithm, and the output variables of the outer loop fuzzy adaptive PID controller is the reference torque of the inner loop control system, which is sent to the direct torque control system. The simulation results showed that the algorithm-optimized fuzzy adaptive PID controller is significantly better than the traditional fuzzy PID controllers in dynamic performance and robustness. It successfully overcomed the problems of steady-state errors and insufficient anti-interference capabilities in fuzzy control, and effectively solved the contradiction between the system rise time and overshoot, and at the same time significantly reduced the pulse of the motor torque.
    Key words: switched reluctance motor; fuzzy adaptive PID; improved bat algorithm; direct torque control
 
參考文獻(xiàn)
[1] 何莉,萬沛霖,肖蕙蕙. PID 型模糊控制器在開關(guān)磁阻電機(jī)驅(qū)動系統(tǒng)中的應(yīng)用[J] . 中小型電機(jī),2004,31(4):32-35.
[2] HO C Y, WANG J C, HU K W, et al.Development and operation control of a switched-reluctance motor driven flywheel[J].IEEE Transactions on Power Electronics,2019,34(1) :526-537.
[3] 孫德博,胡艷芳,牛峰,等. 開關(guān)磁阻電機(jī)調(diào)速系統(tǒng)故障診斷和容錯控制方法研究現(xiàn)狀及展望[J]. 電工技術(shù)學(xué)報,2022,37(9) :2211-2229.
[4] 蔡燕,居春雷,王浩楠,等. 開關(guān)磁阻電機(jī)的新型直接瞬時轉(zhuǎn)矩控制方法及其高效率運行[J]. 電工技術(shù)學(xué)報,2022,37(18) :4625-4637.
[5] 李夢茹,冬雷,于坤洋,等. 開關(guān)磁阻電機(jī)直接轉(zhuǎn)矩控制方法的優(yōu)化[J] . 微特電機(jī),2022,50(11) :16-22.
[6] 金愛娟,劉夢陽,李少龍,等. 平穩(wěn)高效的開關(guān)磁阻電機(jī)控制算法[J] . 包裝工程,2021,42(13) :230-240.
[7] 胡春龍. 基于 DSP 的開關(guān)磁阻電機(jī)直接轉(zhuǎn)矩控制系統(tǒng)設(shè)計與實現(xiàn)[J]. 電氣自動化,2022,44(5) :5-7.
[8] 杜開亮. 基于神經(jīng)網(wǎng)絡(luò)的開關(guān)磁阻電機(jī)建模及無位置傳感器控制[D]. 重慶:重慶大學(xué),2013.
[9] 張振國,徐建科,江濤,等. 開關(guān)磁阻電機(jī)直接轉(zhuǎn)矩模糊控制器設(shè)計與仿真[J] . 計算機(jī)仿真,2012,29(9) :178-181.
[10] 周永勤,徐爽,吳桐,等.12/8 極開關(guān)磁阻電機(jī)直接轉(zhuǎn)矩控制系統(tǒng)建模與仿真[J] . 哈爾濱理工大學(xué)學(xué)報,2017,22(4) :75-80.
[11] 何映思. 模糊推理方法及模糊邏輯形式系統(tǒng)研究[D] .重慶:西南大學(xué),2011.
[12] 王宏波. 開關(guān)磁阻電機(jī)控制技術(shù)在煤礦絞車上的應(yīng)用[J]. 煤礦現(xiàn)代化,2013,55(2) :79-80.
[13] 喬維德. 遺傳模糊神經(jīng)網(wǎng)絡(luò)在交流伺服系統(tǒng)中的應(yīng)用[J]. 江蘇電器,2007(2) :29-31.
[14] SINGH D, SALGOTRA R, SINGH U.A novel modified bat algorithm for global optimization[C]//2017 4th International Conference on Innovations in Information, Embedded and Communication Systems,2017.
[15] GOUDARZI A , FAHAD S , NI Jiahua , et al . A sequential hybridization of ETLBO and IPSO for solving reserve-constrained combined heat,power and economic dispatch problem[J].IET Generation, Transmission & Distribution,2022,16(10) :1930-1949.
[16] ZHAO Bin, CHEN Hao, GAO Diankui, et al.Cleaning decision model of MBR membrane based on Bandelet neural network optimized by improved Bat algorithm[J].Applied Soft Computing,2020,91(9):106211.